Logo Search packages:      
Sourcecode: freebsd-utils version File versions

pfctl_optimize.c

/*    $OpenBSD: pfctl_optimize.c,v 1.13 2006/10/31 14:17:45 mcbride Exp $ */

/*
 * Copyright (c) 2004 Mike Frantzen <frantzen@openbsd.org>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD: src/contrib/pf/pfctl/pfctl_optimize.c,v 1.3.6.1 2008/11/25 02:59:29 kensmith Exp $");

#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/socket.h>

#include <net/if.h>
#include <net/pfvar.h>

#include <netinet/in.h>
#include <arpa/inet.h>

#include <assert.h>
#include <ctype.h>
#include <err.h>
#include <errno.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "pfctl_parser.h"
#include "pfctl.h"

/* The size at which a table becomes faster than individual rules */
#define TABLE_THRESHOLD       6


/* #define OPT_DEBUG    1 */
#ifdef OPT_DEBUG
# define DEBUG(str, v...) \
      printf("%s: " str "\n", __FUNCTION__ , ## v)
#else
# define DEBUG(str, v...) ((void)0)
#endif


/*
 * A container that lets us sort a superblock to optimize the skip step jumps
 */
struct pf_skip_step {
      int                     ps_count;   /* number of items */
      TAILQ_HEAD( , pf_opt_rule)    ps_rules;
      TAILQ_ENTRY(pf_skip_step)     ps_entry;
};


/*
 * A superblock is a block of adjacent rules of similar action.  If there
 * are five PASS rules in a row, they all become members of a superblock.
 * Once we have a superblock, we are free to re-order any rules within it
 * in order to improve performance; if a packet is passed, it doesn't matter
 * who passed it.
 */
struct superblock {
      TAILQ_HEAD( , pf_opt_rule)           sb_rules;
      TAILQ_ENTRY(superblock)              sb_entry;
      struct superblock             *sb_profiled_block;
      TAILQ_HEAD(skiplist, pf_skip_step)   sb_skipsteps[PF_SKIP_COUNT];
};
TAILQ_HEAD(superblocks, superblock);


/*
 * Description of the PF rule structure.
 */
enum {
    BARRIER,      /* the presence of the field puts the rule in it's own block */
    BREAK,  /* the field may not differ between rules in a superblock */
    NOMERGE,      /* the field may not differ between rules when combined */
    COMBINED,     /* the field may itself be combined with other rules */
    DC,           /* we just don't care about the field */
    NEVER}; /* we should never see this field set?!? */
struct pf_rule_field {
      const char  *prf_name;
      int          prf_type;
      size_t             prf_offset;
      size_t             prf_size;
} pf_rule_desc[] = {
#define PF_RULE_FIELD(field, ty)    \
    {#field,                        \
    ty,                             \
    offsetof(struct pf_rule, field),      \
    sizeof(((struct pf_rule *)0)->field)}


    /*
     * The presence of these fields in a rule put the rule in it's own
     * superblock.  Thus it will not be optimized.  It also prevents the
     * rule from being re-ordered at all.
     */
    PF_RULE_FIELD(label,            BARRIER),
    PF_RULE_FIELD(prob,             BARRIER),
    PF_RULE_FIELD(max_states,       BARRIER),
    PF_RULE_FIELD(max_src_nodes,    BARRIER),
    PF_RULE_FIELD(max_src_states,   BARRIER),
    PF_RULE_FIELD(max_src_conn,           BARRIER),
    PF_RULE_FIELD(max_src_conn_rate,      BARRIER),
    PF_RULE_FIELD(anchor,           BARRIER),   /* for now */

    /*
     * These fields must be the same between all rules in the same superblock.
     * These rules are allowed to be re-ordered but only among like rules.
     * For instance we can re-order all 'tag "foo"' rules because they have the
     * same tag.  But we can not re-order between a 'tag "foo"' and a
     * 'tag "bar"' since that would change the meaning of the ruleset.
     */
    PF_RULE_FIELD(tagname,          BREAK),
    PF_RULE_FIELD(keep_state,       BREAK),
    PF_RULE_FIELD(qname,            BREAK),
    PF_RULE_FIELD(pqname,           BREAK),
    PF_RULE_FIELD(rt,               BREAK),
    PF_RULE_FIELD(allow_opts,       BREAK),
    PF_RULE_FIELD(rule_flag,        BREAK),
    PF_RULE_FIELD(action,           BREAK),
    PF_RULE_FIELD(log,              BREAK),
    PF_RULE_FIELD(quick,            BREAK),
    PF_RULE_FIELD(return_ttl,       BREAK),
    PF_RULE_FIELD(overload_tblname, BREAK),
    PF_RULE_FIELD(flush,            BREAK),
    PF_RULE_FIELD(rpool,            BREAK),
    PF_RULE_FIELD(logif,            BREAK),

    /*
     * Any fields not listed in this structure act as BREAK fields
     */


    /*
     * These fields must not differ when we merge two rules together but
     * their difference isn't enough to put the rules in different superblocks.
     * There are no problems re-ordering any rules with these fields.
     */
    PF_RULE_FIELD(af,               NOMERGE),
    PF_RULE_FIELD(ifnot,            NOMERGE),
    PF_RULE_FIELD(ifname,           NOMERGE),   /* hack for IF groups */
    PF_RULE_FIELD(match_tag_not,    NOMERGE),
    PF_RULE_FIELD(match_tagname,    NOMERGE),
    PF_RULE_FIELD(os_fingerprint,   NOMERGE),
    PF_RULE_FIELD(timeout,          NOMERGE),
    PF_RULE_FIELD(return_icmp,            NOMERGE),
    PF_RULE_FIELD(return_icmp6,           NOMERGE),
    PF_RULE_FIELD(uid,              NOMERGE),
    PF_RULE_FIELD(gid,              NOMERGE),
    PF_RULE_FIELD(direction,        NOMERGE),
    PF_RULE_FIELD(proto,            NOMERGE),
    PF_RULE_FIELD(type,             NOMERGE),
    PF_RULE_FIELD(code,             NOMERGE),
    PF_RULE_FIELD(flags,            NOMERGE),
    PF_RULE_FIELD(flagset,          NOMERGE),
    PF_RULE_FIELD(tos,              NOMERGE),
    PF_RULE_FIELD(src.port,         NOMERGE),
    PF_RULE_FIELD(dst.port,         NOMERGE),
    PF_RULE_FIELD(src.port_op,            NOMERGE),
    PF_RULE_FIELD(dst.port_op,            NOMERGE),
    PF_RULE_FIELD(src.neg,          NOMERGE),
    PF_RULE_FIELD(dst.neg,          NOMERGE),

    /* These fields can be merged */
    PF_RULE_FIELD(src.addr,         COMBINED),
    PF_RULE_FIELD(dst.addr,         COMBINED),

    /* We just don't care about these fields.  They're set by the kernel */
    PF_RULE_FIELD(skip,             DC),
    PF_RULE_FIELD(evaluations,            DC),
    PF_RULE_FIELD(packets,          DC),
    PF_RULE_FIELD(bytes,            DC),
    PF_RULE_FIELD(kif,              DC),
    PF_RULE_FIELD(states,           DC),
    PF_RULE_FIELD(src_nodes,        DC),
    PF_RULE_FIELD(nr,               DC),
    PF_RULE_FIELD(entries,          DC),
    PF_RULE_FIELD(qid,              DC),
    PF_RULE_FIELD(pqid,             DC),
    PF_RULE_FIELD(anchor_relative,  DC),
    PF_RULE_FIELD(anchor_wildcard,  DC),
    PF_RULE_FIELD(tag,              DC),
    PF_RULE_FIELD(match_tag,        DC),
    PF_RULE_FIELD(overload_tbl,           DC),

    /* These fields should never be set in a PASS/BLOCK rule */
    PF_RULE_FIELD(natpass,          NEVER),
    PF_RULE_FIELD(max_mss,          NEVER),
    PF_RULE_FIELD(min_ttl,          NEVER),
};



int   add_opt_table(struct pfctl *, struct pf_opt_tbl **, sa_family_t,
          struct pf_rule_addr *);
int   addrs_combineable(struct pf_rule_addr *, struct pf_rule_addr *);
int   addrs_equal(struct pf_rule_addr *, struct pf_rule_addr *);
int   block_feedback(struct pfctl *, struct superblock *);
int   combine_rules(struct pfctl *, struct superblock *);
void  comparable_rule(struct pf_rule *, const struct pf_rule *, int);
int   construct_superblocks(struct pfctl *, struct pf_opt_queue *,
          struct superblocks *);
void  exclude_supersets(struct pf_rule *, struct pf_rule *);
int   interface_group(const char *);
int   load_feedback_profile(struct pfctl *, struct superblocks *);
int   optimize_superblock(struct pfctl *, struct superblock *);
int   pf_opt_create_table(struct pfctl *, struct pf_opt_tbl *);
void  remove_from_skipsteps(struct skiplist *, struct superblock *,
          struct pf_opt_rule *, struct pf_skip_step *);
int   remove_identical_rules(struct pfctl *, struct superblock *);
int   reorder_rules(struct pfctl *, struct superblock *, int);
int   rules_combineable(struct pf_rule *, struct pf_rule *);
void  skip_append(struct superblock *, int, struct pf_skip_step *,
          struct pf_opt_rule *);
int   skip_compare(int, struct pf_skip_step *, struct pf_opt_rule *);
void  skip_init(void);
int   skip_cmp_af(struct pf_rule *, struct pf_rule *);
int   skip_cmp_dir(struct pf_rule *, struct pf_rule *);
int   skip_cmp_dst_addr(struct pf_rule *, struct pf_rule *);
int   skip_cmp_dst_port(struct pf_rule *, struct pf_rule *);
int   skip_cmp_ifp(struct pf_rule *, struct pf_rule *);
int   skip_cmp_proto(struct pf_rule *, struct pf_rule *);
int   skip_cmp_src_addr(struct pf_rule *, struct pf_rule *);
int   skip_cmp_src_port(struct pf_rule *, struct pf_rule *);
int   superblock_inclusive(struct superblock *, struct pf_opt_rule *);
void  superblock_free(struct pfctl *, struct superblock *);


int (*skip_comparitors[PF_SKIP_COUNT])(struct pf_rule *, struct pf_rule *);
const char *skip_comparitors_names[PF_SKIP_COUNT];
#define PF_SKIP_COMPARITORS {                   \
    { "ifp", PF_SKIP_IFP, skip_cmp_ifp },       \
    { "dir", PF_SKIP_DIR, skip_cmp_dir },       \
    { "af", PF_SKIP_AF, skip_cmp_af },                \
    { "proto", PF_SKIP_PROTO, skip_cmp_proto },       \
    { "saddr", PF_SKIP_SRC_ADDR, skip_cmp_src_addr }, \
    { "sport", PF_SKIP_SRC_PORT, skip_cmp_src_port }, \
    { "daddr", PF_SKIP_DST_ADDR, skip_cmp_dst_addr }, \
    { "dport", PF_SKIP_DST_PORT, skip_cmp_dst_port }  \
}

struct pfr_buffer table_buffer;
int table_identifier;


int
pfctl_optimize_ruleset(struct pfctl *pf, struct pf_ruleset *rs)
{
      struct superblocks superblocks;
      struct pf_opt_queue opt_queue;
      struct superblock *block;
      struct pf_opt_rule *por;
      struct pf_rule *r;
      struct pf_rulequeue *old_rules;

      DEBUG("optimizing ruleset");
      memset(&table_buffer, 0, sizeof(table_buffer));
      skip_init();
      TAILQ_INIT(&opt_queue);

      old_rules = rs->rules[PF_RULESET_FILTER].active.ptr;
      rs->rules[PF_RULESET_FILTER].active.ptr =
          rs->rules[PF_RULESET_FILTER].inactive.ptr;
      rs->rules[PF_RULESET_FILTER].inactive.ptr = old_rules;

      /*
       * XXX expanding the pf_opt_rule format throughout pfctl might allow
       * us to avoid all this copying.
       */
      while ((r = TAILQ_FIRST(rs->rules[PF_RULESET_FILTER].inactive.ptr))
          != NULL) {
            TAILQ_REMOVE(rs->rules[PF_RULESET_FILTER].inactive.ptr, r,
                entries);
            if ((por = calloc(1, sizeof(*por))) == NULL)
                  err(1, "calloc");
            memcpy(&por->por_rule, r, sizeof(*r));
            if (TAILQ_FIRST(&r->rpool.list) != NULL) {
                  TAILQ_INIT(&por->por_rule.rpool.list);
                  pfctl_move_pool(&r->rpool, &por->por_rule.rpool);
            } else
                  bzero(&por->por_rule.rpool,
                      sizeof(por->por_rule.rpool));


            TAILQ_INSERT_TAIL(&opt_queue, por, por_entry);
      }

      TAILQ_INIT(&superblocks);
      if (construct_superblocks(pf, &opt_queue, &superblocks))
            goto error;

      if (pf->optimize & PF_OPTIMIZE_PROFILE) {
            if (load_feedback_profile(pf, &superblocks))
                  goto error;
      }

      TAILQ_FOREACH(block, &superblocks, sb_entry) {
            if (optimize_superblock(pf, block))
                  goto error;
      }

      rs->anchor->refcnt = 0;
      while ((block = TAILQ_FIRST(&superblocks))) {
            TAILQ_REMOVE(&superblocks, block, sb_entry);

            while ((por = TAILQ_FIRST(&block->sb_rules))) {
                  TAILQ_REMOVE(&block->sb_rules, por, por_entry);
                  por->por_rule.nr = rs->anchor->refcnt++;
                  if ((r = calloc(1, sizeof(*r))) == NULL)
                        err(1, "calloc");
                  memcpy(r, &por->por_rule, sizeof(*r));
                  TAILQ_INIT(&r->rpool.list);
                  pfctl_move_pool(&por->por_rule.rpool, &r->rpool);
                  TAILQ_INSERT_TAIL(
                      rs->rules[PF_RULESET_FILTER].active.ptr,
                      r, entries);
                  free(por);
            }
            free(block);
      }

      return (0);

error:
      while ((por = TAILQ_FIRST(&opt_queue))) {
            TAILQ_REMOVE(&opt_queue, por, por_entry);
            if (por->por_src_tbl) {
                  pfr_buf_clear(por->por_src_tbl->pt_buf);
                  free(por->por_src_tbl->pt_buf);
                  free(por->por_src_tbl);
            }
            if (por->por_dst_tbl) {
                  pfr_buf_clear(por->por_dst_tbl->pt_buf);
                  free(por->por_dst_tbl->pt_buf);
                  free(por->por_dst_tbl);
            }
            free(por);
      }
      while ((block = TAILQ_FIRST(&superblocks))) {
            TAILQ_REMOVE(&superblocks, block, sb_entry);
            superblock_free(pf, block);
      }
      return (1);
}


/*
 * Go ahead and optimize a superblock
 */
int
optimize_superblock(struct pfctl *pf, struct superblock *block)
{
#ifdef OPT_DEBUG
      struct pf_opt_rule *por;
#endif /* OPT_DEBUG */

      /* We have a few optimization passes:
       *   1) remove duplicate rules or rules that are a subset of other
       *      rules
       *   2) combine otherwise identical rules with different IP addresses
       *      into a single rule and put the addresses in a table.
       *   3) re-order the rules to improve kernel skip steps
       *   4) re-order the 'quick' rules based on feedback from the
       *      active ruleset statistics
       *
       * XXX combine_rules() doesn't combine v4 and v6 rules.  would just
       *     have to keep af in the table container, make af 'COMBINE' and
       *     twiddle the af on the merged rule
       * XXX maybe add a weighting to the metric on skipsteps when doing
       *     reordering.  sometimes two sequential tables will be better
       *     that four consecutive interfaces.
       * XXX need to adjust the skipstep count of everything after PROTO,
       *     since they aren't actually checked on a proto mismatch in
       *     pf_test_{tcp, udp, icmp}()
       * XXX should i treat proto=0, af=0 or dir=0 special in skepstep
       *     calculation since they are a DC?
       * XXX keep last skiplist of last superblock to influence this
       *     superblock.  '5 inet6 log' should make '3 inet6' come before '4
       *     inet' in the next superblock.
       * XXX would be useful to add tables for ports
       * XXX we can also re-order some mutually exclusive superblocks to
       *     try merging superblocks before any of these optimization passes.
       *     for instance a single 'log in' rule in the middle of non-logging
       *     out rules.
       */

      /* shortcut.  there will be alot of 1-rule superblocks */
      if (!TAILQ_NEXT(TAILQ_FIRST(&block->sb_rules), por_entry))
            return (0);

#ifdef OPT_DEBUG
      printf("--- Superblock ---\n");
      TAILQ_FOREACH(por, &block->sb_rules, por_entry) {
            printf("  ");
            print_rule(&por->por_rule, por->por_rule.anchor ?
                por->por_rule.anchor->name : "", 1);
      }
#endif /* OPT_DEBUG */


      if (remove_identical_rules(pf, block))
            return (1);
      if (combine_rules(pf, block))
            return (1);
      if ((pf->optimize & PF_OPTIMIZE_PROFILE) &&
          TAILQ_FIRST(&block->sb_rules)->por_rule.quick &&
          block->sb_profiled_block) {
            if (block_feedback(pf, block))
                  return (1);
      } else if (reorder_rules(pf, block, 0)) {
            return (1);
      }

      /*
       * Don't add any optimization passes below reorder_rules().  It will
       * have divided superblocks into smaller blocks for further refinement
       * and doesn't put them back together again.  What once was a true
       * superblock might have been split into multiple superblocks.
       */

#ifdef OPT_DEBUG
      printf("--- END Superblock ---\n");
#endif /* OPT_DEBUG */
      return (0);
}


/*
 * Optimization pass #1: remove identical rules
 */
int
remove_identical_rules(struct pfctl *pf, struct superblock *block)
{
      struct pf_opt_rule *por1, *por2, *por_next, *por2_next;
      struct pf_rule a, a2, b, b2;

      for (por1 = TAILQ_FIRST(&block->sb_rules); por1; por1 = por_next) {
            por_next = TAILQ_NEXT(por1, por_entry);
            for (por2 = por_next; por2; por2 = por2_next) {
                  por2_next = TAILQ_NEXT(por2, por_entry);
                  comparable_rule(&a, &por1->por_rule, DC);
                  comparable_rule(&b, &por2->por_rule, DC);
                  memcpy(&a2, &a, sizeof(a2));
                  memcpy(&b2, &b, sizeof(b2));

                  exclude_supersets(&a, &b);
                  exclude_supersets(&b2, &a2);
                  if (memcmp(&a, &b, sizeof(a)) == 0) {
                        DEBUG("removing identical rule  nr%d = *nr%d*",
                            por1->por_rule.nr, por2->por_rule.nr);
                        TAILQ_REMOVE(&block->sb_rules, por2, por_entry);
                        if (por_next == por2)
                              por_next = TAILQ_NEXT(por1, por_entry);
                        free(por2);
                  } else if (memcmp(&a2, &b2, sizeof(a2)) == 0) {
                        DEBUG("removing identical rule  *nr%d* = nr%d",
                            por1->por_rule.nr, por2->por_rule.nr);
                        TAILQ_REMOVE(&block->sb_rules, por1, por_entry);
                        free(por1);
                        break;
                  }
            }
      }

      return (0);
}


/*
 * Optimization pass #2: combine similar rules with different addresses
 * into a single rule and a table
 */
int
combine_rules(struct pfctl *pf, struct superblock *block)
{
      struct pf_opt_rule *p1, *p2, *por_next;
      int src_eq, dst_eq;

      if ((pf->loadopt & PFCTL_FLAG_TABLE) == 0) {
            warnx("Must enable table loading for optimizations");
            return (1);
      }

      /* First we make a pass to combine the rules.  O(n log n) */
      TAILQ_FOREACH(p1, &block->sb_rules, por_entry) {
            for (p2 = TAILQ_NEXT(p1, por_entry); p2; p2 = por_next) {
                  por_next = TAILQ_NEXT(p2, por_entry);

                  src_eq = addrs_equal(&p1->por_rule.src,
                      &p2->por_rule.src);
                  dst_eq = addrs_equal(&p1->por_rule.dst,
                      &p2->por_rule.dst);

                  if (src_eq && !dst_eq && p1->por_src_tbl == NULL &&
                      p2->por_dst_tbl == NULL &&
                      p2->por_src_tbl == NULL &&
                      rules_combineable(&p1->por_rule, &p2->por_rule) &&
                      addrs_combineable(&p1->por_rule.dst,
                      &p2->por_rule.dst)) {
                        DEBUG("can combine rules  nr%d = nr%d",
                            p1->por_rule.nr, p2->por_rule.nr);
                        if (p1->por_dst_tbl == NULL &&
                            add_opt_table(pf, &p1->por_dst_tbl,
                            p1->por_rule.af, &p1->por_rule.dst))
                              return (1);
                        if (add_opt_table(pf, &p1->por_dst_tbl,
                            p1->por_rule.af, &p2->por_rule.dst))
                              return (1);
                        p2->por_dst_tbl = p1->por_dst_tbl;
                        if (p1->por_dst_tbl->pt_rulecount >=
                            TABLE_THRESHOLD) {
                              TAILQ_REMOVE(&block->sb_rules, p2,
                                  por_entry);
                              free(p2);
                        }
                  } else if (!src_eq && dst_eq && p1->por_dst_tbl == NULL
                      && p2->por_src_tbl == NULL &&
                      p2->por_dst_tbl == NULL &&
                      rules_combineable(&p1->por_rule, &p2->por_rule) &&
                      addrs_combineable(&p1->por_rule.src,
                      &p2->por_rule.src)) {
                        DEBUG("can combine rules  nr%d = nr%d",
                            p1->por_rule.nr, p2->por_rule.nr);
                        if (p1->por_src_tbl == NULL &&
                            add_opt_table(pf, &p1->por_src_tbl,
                            p1->por_rule.af, &p1->por_rule.src))
                              return (1);
                        if (add_opt_table(pf, &p1->por_src_tbl,
                            p1->por_rule.af, &p2->por_rule.src))
                              return (1);
                        p2->por_src_tbl = p1->por_src_tbl;
                        if (p1->por_src_tbl->pt_rulecount >=
                            TABLE_THRESHOLD) {
                              TAILQ_REMOVE(&block->sb_rules, p2,
                                  por_entry);
                              free(p2);
                        }
                  }
            }
      }


      /*
       * Then we make a final pass to create a valid table name and
       * insert the name into the rules.
       */
      for (p1 = TAILQ_FIRST(&block->sb_rules); p1; p1 = por_next) {
            por_next = TAILQ_NEXT(p1, por_entry);
            assert(p1->por_src_tbl == NULL || p1->por_dst_tbl == NULL);

            if (p1->por_src_tbl && p1->por_src_tbl->pt_rulecount >=
                TABLE_THRESHOLD) {
                  if (p1->por_src_tbl->pt_generated) {
                        /* This rule is included in a table */
                        TAILQ_REMOVE(&block->sb_rules, p1, por_entry);
                        free(p1);
                        continue;
                  }
                  p1->por_src_tbl->pt_generated = 1;

                  if ((pf->opts & PF_OPT_NOACTION) == 0 &&
                      pf_opt_create_table(pf, p1->por_src_tbl))
                        return (1);

                  pf->tdirty = 1;

                  if (pf->opts & PF_OPT_VERBOSE)
                        print_tabledef(p1->por_src_tbl->pt_name,
                            PFR_TFLAG_CONST, 1,
                            &p1->por_src_tbl->pt_nodes);

                  memset(&p1->por_rule.src.addr, 0,
                      sizeof(p1->por_rule.src.addr));
                  p1->por_rule.src.addr.type = PF_ADDR_TABLE;
                  strlcpy(p1->por_rule.src.addr.v.tblname,
                      p1->por_src_tbl->pt_name,
                      sizeof(p1->por_rule.src.addr.v.tblname));

                  pfr_buf_clear(p1->por_src_tbl->pt_buf);
                  free(p1->por_src_tbl->pt_buf);
                  p1->por_src_tbl->pt_buf = NULL;
            }
            if (p1->por_dst_tbl && p1->por_dst_tbl->pt_rulecount >=
                TABLE_THRESHOLD) {
                  if (p1->por_dst_tbl->pt_generated) {
                        /* This rule is included in a table */
                        TAILQ_REMOVE(&block->sb_rules, p1, por_entry);
                        free(p1);
                        continue;
                  }
                  p1->por_dst_tbl->pt_generated = 1;

                  if ((pf->opts & PF_OPT_NOACTION) == 0 &&
                      pf_opt_create_table(pf, p1->por_dst_tbl))
                        return (1);
                  pf->tdirty = 1;

                  if (pf->opts & PF_OPT_VERBOSE)
                        print_tabledef(p1->por_dst_tbl->pt_name,
                            PFR_TFLAG_CONST, 1,
                            &p1->por_dst_tbl->pt_nodes);

                  memset(&p1->por_rule.dst.addr, 0,
                      sizeof(p1->por_rule.dst.addr));
                  p1->por_rule.dst.addr.type = PF_ADDR_TABLE;
                  strlcpy(p1->por_rule.dst.addr.v.tblname,
                      p1->por_dst_tbl->pt_name,
                      sizeof(p1->por_rule.dst.addr.v.tblname));

                  pfr_buf_clear(p1->por_dst_tbl->pt_buf);
                  free(p1->por_dst_tbl->pt_buf);
                  p1->por_dst_tbl->pt_buf = NULL;
            }
      }

      return (0);
}


/*
 * Optimization pass #3: re-order rules to improve skip steps
 */
int
reorder_rules(struct pfctl *pf, struct superblock *block, int depth)
{
      struct superblock *newblock;
      struct pf_skip_step *skiplist;
      struct pf_opt_rule *por;
      int i, largest, largest_list, rule_count = 0;
      TAILQ_HEAD( , pf_opt_rule) head;

      /*
       * Calculate the best-case skip steps.  We put each rule in a list
       * of other rules with common fields
       */
      for (i = 0; i < PF_SKIP_COUNT; i++) {
            TAILQ_FOREACH(por, &block->sb_rules, por_entry) {
                  TAILQ_FOREACH(skiplist, &block->sb_skipsteps[i],
                      ps_entry) {
                        if (skip_compare(i, skiplist, por) == 0)
                              break;
                  }
                  if (skiplist == NULL) {
                        if ((skiplist = calloc(1, sizeof(*skiplist))) ==
                            NULL)
                              err(1, "calloc");
                        TAILQ_INIT(&skiplist->ps_rules);
                        TAILQ_INSERT_TAIL(&block->sb_skipsteps[i],
                            skiplist, ps_entry);
                  }
                  skip_append(block, i, skiplist, por);
            }
      }

      TAILQ_FOREACH(por, &block->sb_rules, por_entry)
            rule_count++;

      /*
       * Now we're going to ignore any fields that are identical between
       * all of the rules in the superblock and those fields which differ
       * between every rule in the superblock.
       */
      largest = 0;
      for (i = 0; i < PF_SKIP_COUNT; i++) {
            skiplist = TAILQ_FIRST(&block->sb_skipsteps[i]);
            if (skiplist->ps_count == rule_count) {
                  DEBUG("(%d) original skipstep '%s' is all rules",
                      depth, skip_comparitors_names[i]);
                  skiplist->ps_count = 0;
            } else if (skiplist->ps_count == 1) {
                  skiplist->ps_count = 0;
            } else {
                  DEBUG("(%d) original skipstep '%s' largest jump is %d",
                      depth, skip_comparitors_names[i],
                      skiplist->ps_count);
                  if (skiplist->ps_count > largest)
                        largest = skiplist->ps_count;
            }
      }
      if (largest == 0) {
            /* Ugh.  There is NO commonality in the superblock on which
             * optimize the skipsteps optimization.
             */
            goto done;
      }

      /*
       * Now we're going to empty the superblock rule list and re-create
       * it based on a more optimal skipstep order.
       */
      TAILQ_INIT(&head);
      while ((por = TAILQ_FIRST(&block->sb_rules))) {
            TAILQ_REMOVE(&block->sb_rules, por, por_entry);
            TAILQ_INSERT_TAIL(&head, por, por_entry);
      }


      while (!TAILQ_EMPTY(&head)) {
            largest = 1;

            /*
             * Find the most useful skip steps remaining
             */
            for (i = 0; i < PF_SKIP_COUNT; i++) {
                  skiplist = TAILQ_FIRST(&block->sb_skipsteps[i]);
                  if (skiplist->ps_count > largest) {
                        largest = skiplist->ps_count;
                        largest_list = i;
                  }
            }

            if (largest <= 1) {
                  /*
                   * Nothing useful left.  Leave remaining rules in order.
                   */
                  DEBUG("(%d) no more commonality for skip steps", depth);
                  while ((por = TAILQ_FIRST(&head))) {
                        TAILQ_REMOVE(&head, por, por_entry);
                        TAILQ_INSERT_TAIL(&block->sb_rules, por,
                            por_entry);
                  }
            } else {
                  /*
                   * There is commonality.  Extract those common rules
                   * and place them in the ruleset adjacent to each
                   * other.
                   */
                  skiplist = TAILQ_FIRST(&block->sb_skipsteps[
                      largest_list]);
                  DEBUG("(%d) skipstep '%s' largest jump is %d @ #%d",
                      depth, skip_comparitors_names[largest_list],
                      largest, TAILQ_FIRST(&TAILQ_FIRST(&block->
                      sb_skipsteps [largest_list])->ps_rules)->
                      por_rule.nr);
                  TAILQ_REMOVE(&block->sb_skipsteps[largest_list],
                      skiplist, ps_entry);


                  /*
                   * There may be further commonality inside these
                   * rules.  So we'll split them off into they're own
                   * superblock and pass it back into the optimizer.
                   */
                  if (skiplist->ps_count > 2) {
                        if ((newblock = calloc(1, sizeof(*newblock)))
                            == NULL) {
                              warn("calloc");
                              return (1);
                        }
                        TAILQ_INIT(&newblock->sb_rules);
                        for (i = 0; i < PF_SKIP_COUNT; i++)
                              TAILQ_INIT(&newblock->sb_skipsteps[i]);
                        TAILQ_INSERT_BEFORE(block, newblock, sb_entry);
                        DEBUG("(%d) splitting off %d rules from superblock @ #%d",
                            depth, skiplist->ps_count,
                            TAILQ_FIRST(&skiplist->ps_rules)->
                            por_rule.nr);
                  } else {
                        newblock = block;
                  }

                  while ((por = TAILQ_FIRST(&skiplist->ps_rules))) {
                        TAILQ_REMOVE(&head, por, por_entry);
                        TAILQ_REMOVE(&skiplist->ps_rules, por,
                            por_skip_entry[largest_list]);
                        TAILQ_INSERT_TAIL(&newblock->sb_rules, por,
                            por_entry);

                        /* Remove this rule from all other skiplists */
                        remove_from_skipsteps(&block->sb_skipsteps[
                            largest_list], block, por, skiplist);
                  }
                  free(skiplist);
                  if (newblock != block)
                        if (reorder_rules(pf, newblock, depth + 1))
                              return (1);
            }
      }

done:
      for (i = 0; i < PF_SKIP_COUNT; i++) {
            while ((skiplist = TAILQ_FIRST(&block->sb_skipsteps[i]))) {
                  TAILQ_REMOVE(&block->sb_skipsteps[i], skiplist,
                      ps_entry);
                  free(skiplist);
            }
      }

      return (0);
}


/*
 * Optimization pass #4: re-order 'quick' rules based on feedback from the
 * currently running ruleset
 */
int
block_feedback(struct pfctl *pf, struct superblock *block)
{
      TAILQ_HEAD( , pf_opt_rule) queue;
      struct pf_opt_rule *por1, *por2;
      u_int64_t total_count = 0;
      struct pf_rule a, b;


      /*
       * Walk through all of the profiled superblock's rules and copy
       * the counters onto our rules.
       */
      TAILQ_FOREACH(por1, &block->sb_profiled_block->sb_rules, por_entry) {
            comparable_rule(&a, &por1->por_rule, DC);
            total_count += por1->por_rule.packets[0] +
                por1->por_rule.packets[1];
            TAILQ_FOREACH(por2, &block->sb_rules, por_entry) {
                  if (por2->por_profile_count)
                        continue;
                  comparable_rule(&b, &por2->por_rule, DC);
                  if (memcmp(&a, &b, sizeof(a)) == 0) {
                        por2->por_profile_count =
                            por1->por_rule.packets[0] +
                            por1->por_rule.packets[1];
                        break;
                  }
            }
      }
      superblock_free(pf, block->sb_profiled_block);
      block->sb_profiled_block = NULL;

      /*
       * Now we pull all of the rules off the superblock and re-insert them
       * in sorted order.
       */

      TAILQ_INIT(&queue);
      while ((por1 = TAILQ_FIRST(&block->sb_rules)) != NULL) {
            TAILQ_REMOVE(&block->sb_rules, por1, por_entry);
            TAILQ_INSERT_TAIL(&queue, por1, por_entry);
      }

      while ((por1 = TAILQ_FIRST(&queue)) != NULL) {
            TAILQ_REMOVE(&queue, por1, por_entry);
/* XXX I should sort all of the unused rules based on skip steps */
            TAILQ_FOREACH(por2, &block->sb_rules, por_entry) {
                  if (por1->por_profile_count > por2->por_profile_count) {
                        TAILQ_INSERT_BEFORE(por2, por1, por_entry);
                        break;
                  }
            }
#ifdef __FreeBSD__
            if (por2 == NULL)
#else
            if (por2 == TAILQ_END(&block->sb_rules))
#endif
                  TAILQ_INSERT_TAIL(&block->sb_rules, por1, por_entry);
      }

      return (0);
}


/*
 * Load the current ruleset from the kernel and try to associate them with
 * the ruleset we're optimizing.
 */
int
load_feedback_profile(struct pfctl *pf, struct superblocks *superblocks)
{
      struct superblock *block, *blockcur;
      struct superblocks prof_superblocks;
      struct pf_opt_rule *por;
      struct pf_opt_queue queue;
      struct pfioc_rule pr;
      struct pf_rule a, b;
      int nr, mnr;

      TAILQ_INIT(&queue);
      TAILQ_INIT(&prof_superblocks);

      memset(&pr, 0, sizeof(pr));
      pr.rule.action = PF_PASS;
      if (ioctl(pf->dev, DIOCGETRULES, &pr)) {
            warn("DIOCGETRULES");
            return (1);
      }
      mnr = pr.nr;

      DEBUG("Loading %d active rules for a feedback profile", mnr);
      for (nr = 0; nr < mnr; ++nr) {
            struct pf_ruleset *rs;
            if ((por = calloc(1, sizeof(*por))) == NULL) {
                  warn("calloc");
                  return (1);
            }
            pr.nr = nr;
            if (ioctl(pf->dev, DIOCGETRULE, &pr)) {
                  warn("DIOCGETRULES");
                  return (1);
            }
            memcpy(&por->por_rule, &pr.rule, sizeof(por->por_rule));
            rs = pf_find_or_create_ruleset(pr.anchor_call);
            por->por_rule.anchor = rs->anchor;
            if (TAILQ_EMPTY(&por->por_rule.rpool.list))
                  memset(&por->por_rule.rpool, 0,
                      sizeof(por->por_rule.rpool));
            TAILQ_INSERT_TAIL(&queue, por, por_entry);

            /* XXX pfctl_get_pool(pf->dev, &pr.rule.rpool, nr, pr.ticket,
             *         PF_PASS, pf->anchor) ???
             * ... pfctl_clear_pool(&pr.rule.rpool)
             */
      }

      if (construct_superblocks(pf, &queue, &prof_superblocks))
            return (1);


      /*
       * Now we try to associate the active ruleset's superblocks with
       * the superblocks we're compiling.
       */
      block = TAILQ_FIRST(superblocks);
      blockcur = TAILQ_FIRST(&prof_superblocks);
      while (block && blockcur) {
            comparable_rule(&a, &TAILQ_FIRST(&block->sb_rules)->por_rule,
                BREAK);
            comparable_rule(&b, &TAILQ_FIRST(&blockcur->sb_rules)->por_rule,
                BREAK);
            if (memcmp(&a, &b, sizeof(a)) == 0) {
                  /* The two superblocks lined up */
                  block->sb_profiled_block = blockcur;
            } else {
                  DEBUG("superblocks don't line up between #%d and #%d",
                      TAILQ_FIRST(&block->sb_rules)->por_rule.nr,
                      TAILQ_FIRST(&blockcur->sb_rules)->por_rule.nr);
                  break;
            }
            block = TAILQ_NEXT(block, sb_entry);
            blockcur = TAILQ_NEXT(blockcur, sb_entry);
      }



      /* Free any superblocks we couldn't link */
      while (blockcur) {
            block = TAILQ_NEXT(blockcur, sb_entry);
            superblock_free(pf, blockcur);
            blockcur = block;
      }
      return (0);
}


/*
 * Compare a rule to a skiplist to see if the rule is a member
 */
int
skip_compare(int skipnum, struct pf_skip_step *skiplist,
    struct pf_opt_rule *por)
{
      struct pf_rule *a, *b;
      if (skipnum >= PF_SKIP_COUNT || skipnum < 0)
            errx(1, "skip_compare() out of bounds");
      a = &por->por_rule;
      b = &TAILQ_FIRST(&skiplist->ps_rules)->por_rule;

      return ((skip_comparitors[skipnum])(a, b));
}


/*
 * Add a rule to a skiplist
 */
void
skip_append(struct superblock *superblock, int skipnum,
    struct pf_skip_step *skiplist, struct pf_opt_rule *por)
{
      struct pf_skip_step *prev;

      skiplist->ps_count++;
      TAILQ_INSERT_TAIL(&skiplist->ps_rules, por, por_skip_entry[skipnum]);

      /* Keep the list of skiplists sorted by whichever is larger */
      while ((prev = TAILQ_PREV(skiplist, skiplist, ps_entry)) &&
          prev->ps_count < skiplist->ps_count) {
            TAILQ_REMOVE(&superblock->sb_skipsteps[skipnum],
                skiplist, ps_entry);
            TAILQ_INSERT_BEFORE(prev, skiplist, ps_entry);
      }
}


/*
 * Remove a rule from the other skiplist calculations.
 */
void
remove_from_skipsteps(struct skiplist *head, struct superblock *block,
    struct pf_opt_rule *por, struct pf_skip_step *active_list)
{
      struct pf_skip_step *sk, *next;
      struct pf_opt_rule *p2;
      int i, found;

      for (i = 0; i < PF_SKIP_COUNT; i++) {
            sk = TAILQ_FIRST(&block->sb_skipsteps[i]);
            if (sk == NULL || sk == active_list || sk->ps_count <= 1)
                  continue;
            found = 0;
            do {
                  TAILQ_FOREACH(p2, &sk->ps_rules, por_skip_entry[i])
                        if (p2 == por) {
                              TAILQ_REMOVE(&sk->ps_rules, p2,
                                  por_skip_entry[i]);
                              found = 1;
                              sk->ps_count--;
                              break;
                        }
            } while (!found && (sk = TAILQ_NEXT(sk, ps_entry)));
            if (found && sk) {
                  /* Does this change the sorting order? */
                  while ((next = TAILQ_NEXT(sk, ps_entry)) &&
                      next->ps_count > sk->ps_count) {
                        TAILQ_REMOVE(head, sk, ps_entry);
                        TAILQ_INSERT_AFTER(head, next, sk, ps_entry);
                  }
#ifdef OPT_DEBUG
                  next = TAILQ_NEXT(sk, ps_entry);
                  assert(next == NULL || next->ps_count <= sk->ps_count);
#endif /* OPT_DEBUG */
            }
      }
}


/* Compare two rules AF field for skiplist construction */
int
skip_cmp_af(struct pf_rule *a, struct pf_rule *b)
{
      if (a->af != b->af || a->af == 0)
            return (1);
      return (0);
}

/* Compare two rules DIRECTION field for skiplist construction */
int
skip_cmp_dir(struct pf_rule *a, struct pf_rule *b)
{
      if (a->direction == 0 || a->direction != b->direction)
            return (1);
      return (0);
}

/* Compare two rules DST Address field for skiplist construction */
int
skip_cmp_dst_addr(struct pf_rule *a, struct pf_rule *b)
{
      if (a->dst.neg != b->dst.neg ||
          a->dst.addr.type != b->dst.addr.type)
            return (1);
      /* XXX if (a->proto != b->proto && a->proto != 0 && b->proto != 0
       *    && (a->proto == IPPROTO_TCP || a->proto == IPPROTO_UDP ||
       *    a->proto == IPPROTO_ICMP
       *    return (1);
       */
      switch (a->dst.addr.type) {
      case PF_ADDR_ADDRMASK:
            if (memcmp(&a->dst.addr.v.a.addr, &b->dst.addr.v.a.addr,
                sizeof(a->dst.addr.v.a.addr)) ||
                memcmp(&a->dst.addr.v.a.mask, &b->dst.addr.v.a.mask,
                sizeof(a->dst.addr.v.a.mask)) ||
                (a->dst.addr.v.a.addr.addr32[0] == 0 &&
                a->dst.addr.v.a.addr.addr32[1] == 0 &&
                a->dst.addr.v.a.addr.addr32[2] == 0 &&
                a->dst.addr.v.a.addr.addr32[3] == 0))
                  return (1);
            return (0);
      case PF_ADDR_DYNIFTL:
            if (strcmp(a->dst.addr.v.ifname, b->dst.addr.v.ifname) != 0 ||
                a->dst.addr.iflags != a->dst.addr.iflags ||
                memcmp(&a->dst.addr.v.a.mask, &b->dst.addr.v.a.mask,
                sizeof(a->dst.addr.v.a.mask)))
                  return (1);
            return (0);
      case PF_ADDR_NOROUTE:
      case PF_ADDR_URPFFAILED:
            return (0);
      case PF_ADDR_TABLE:
            return (strcmp(a->dst.addr.v.tblname, b->dst.addr.v.tblname));
      }
      return (1);
}

/* Compare two rules DST port field for skiplist construction */
int
skip_cmp_dst_port(struct pf_rule *a, struct pf_rule *b)
{
      /* XXX if (a->proto != b->proto && a->proto != 0 && b->proto != 0
       *    && (a->proto == IPPROTO_TCP || a->proto == IPPROTO_UDP ||
       *    a->proto == IPPROTO_ICMP
       *    return (1);
       */
      if (a->dst.port_op == PF_OP_NONE || a->dst.port_op != b->dst.port_op ||
          a->dst.port[0] != b->dst.port[0] ||
          a->dst.port[1] != b->dst.port[1])
            return (1);
      return (0);
}

/* Compare two rules IFP field for skiplist construction */
int
skip_cmp_ifp(struct pf_rule *a, struct pf_rule *b)
{
      if (strcmp(a->ifname, b->ifname) || a->ifname[0] == '\0')
            return (1);
      return (a->ifnot != b->ifnot);
}

/* Compare two rules PROTO field for skiplist construction */
int
skip_cmp_proto(struct pf_rule *a, struct pf_rule *b)
{
      return (a->proto != b->proto || a->proto == 0);
}

/* Compare two rules SRC addr field for skiplist construction */
int
skip_cmp_src_addr(struct pf_rule *a, struct pf_rule *b)
{
      if (a->src.neg != b->src.neg ||
          a->src.addr.type != b->src.addr.type)
            return (1);
      /* XXX if (a->proto != b->proto && a->proto != 0 && b->proto != 0
       *    && (a->proto == IPPROTO_TCP || a->proto == IPPROTO_UDP ||
       *    a->proto == IPPROTO_ICMP
       *    return (1);
       */
      switch (a->src.addr.type) {
      case PF_ADDR_ADDRMASK:
            if (memcmp(&a->src.addr.v.a.addr, &b->src.addr.v.a.addr,
                sizeof(a->src.addr.v.a.addr)) ||
                memcmp(&a->src.addr.v.a.mask, &b->src.addr.v.a.mask,
                sizeof(a->src.addr.v.a.mask)) ||
                (a->src.addr.v.a.addr.addr32[0] == 0 &&
                a->src.addr.v.a.addr.addr32[1] == 0 &&
                a->src.addr.v.a.addr.addr32[2] == 0 &&
                a->src.addr.v.a.addr.addr32[3] == 0))
                  return (1);
            return (0);
      case PF_ADDR_DYNIFTL:
            if (strcmp(a->src.addr.v.ifname, b->src.addr.v.ifname) != 0 ||
                a->src.addr.iflags != a->src.addr.iflags ||
                memcmp(&a->src.addr.v.a.mask, &b->src.addr.v.a.mask,
                sizeof(a->src.addr.v.a.mask)))
                  return (1);
            return (0);
      case PF_ADDR_NOROUTE:
      case PF_ADDR_URPFFAILED:
            return (0);
      case PF_ADDR_TABLE:
            return (strcmp(a->src.addr.v.tblname, b->src.addr.v.tblname));
      }
      return (1);
}

/* Compare two rules SRC port field for skiplist construction */
int
skip_cmp_src_port(struct pf_rule *a, struct pf_rule *b)
{
      if (a->src.port_op == PF_OP_NONE || a->src.port_op != b->src.port_op ||
          a->src.port[0] != b->src.port[0] ||
          a->src.port[1] != b->src.port[1])
            return (1);
      /* XXX if (a->proto != b->proto && a->proto != 0 && b->proto != 0
       *    && (a->proto == IPPROTO_TCP || a->proto == IPPROTO_UDP ||
       *    a->proto == IPPROTO_ICMP
       *    return (1);
       */
      return (0);
}


void
skip_init(void)
{
      struct {
            char *name;
            int skipnum;
            int (*func)(struct pf_rule *, struct pf_rule *);
      } comps[] = PF_SKIP_COMPARITORS;
      int skipnum, i;

      for (skipnum = 0; skipnum < PF_SKIP_COUNT; skipnum++) {
            for (i = 0; i < sizeof(comps)/sizeof(*comps); i++)
                  if (comps[i].skipnum == skipnum) {
                        skip_comparitors[skipnum] = comps[i].func;
                        skip_comparitors_names[skipnum] = comps[i].name;
                  }
      }
      for (skipnum = 0; skipnum < PF_SKIP_COUNT; skipnum++)
            if (skip_comparitors[skipnum] == NULL)
                  errx(1, "Need to add skip step comparitor to pfctl?!");
}

/*
 * Add a host/netmask to a table
 */
int
add_opt_table(struct pfctl *pf, struct pf_opt_tbl **tbl, sa_family_t af,
    struct pf_rule_addr *addr)
{
#ifdef OPT_DEBUG
      char buf[128];
#endif /* OPT_DEBUG */
      static int tablenum = 0;
      struct node_host node_host;

      if (*tbl == NULL) {
            if ((*tbl = calloc(1, sizeof(**tbl))) == NULL ||
                ((*tbl)->pt_buf = calloc(1, sizeof(*(*tbl)->pt_buf))) ==
                NULL)
                  err(1, "calloc");
            (*tbl)->pt_buf->pfrb_type = PFRB_ADDRS;
            SIMPLEQ_INIT(&(*tbl)->pt_nodes);

            /* This is just a temporary table name */
            snprintf((*tbl)->pt_name, sizeof((*tbl)->pt_name), "%s%d",
                PF_OPT_TABLE_PREFIX, tablenum++);
            DEBUG("creating table <%s>", (*tbl)->pt_name);
      }

      memset(&node_host, 0, sizeof(node_host));
      node_host.af = af;
      node_host.addr = addr->addr;

#ifdef OPT_DEBUG
      DEBUG("<%s> adding %s/%d", (*tbl)->pt_name, inet_ntop(af,
          &node_host.addr.v.a.addr, buf, sizeof(buf)),
          unmask(&node_host.addr.v.a.mask, af));
#endif /* OPT_DEBUG */

      if (append_addr_host((*tbl)->pt_buf, &node_host, 0, 0)) {
            warn("failed to add host");
            return (1);
      }
      if (pf->opts & PF_OPT_VERBOSE) {
            struct node_tinit *ti;

            if ((ti = calloc(1, sizeof(*ti))) == NULL)
                  err(1, "malloc");
            if ((ti->host = malloc(sizeof(*ti->host))) == NULL)
                  err(1, "malloc");
            memcpy(ti->host, &node_host, sizeof(*ti->host));
            SIMPLEQ_INSERT_TAIL(&(*tbl)->pt_nodes, ti, entries);
      }

      (*tbl)->pt_rulecount++;
      if ((*tbl)->pt_rulecount == TABLE_THRESHOLD)
            DEBUG("table <%s> now faster than skip steps", (*tbl)->pt_name);

      return (0);
}


/*
 * Do the dirty work of choosing an unused table name and creating it.
 * (be careful with the table name, it might already be used in another anchor)
 */
int
pf_opt_create_table(struct pfctl *pf, struct pf_opt_tbl *tbl)
{
      static int tablenum;
      struct pfr_table *t;

      if (table_buffer.pfrb_type == 0) {
            /* Initialize the list of tables */
            table_buffer.pfrb_type = PFRB_TABLES;
            for (;;) {
                  pfr_buf_grow(&table_buffer, table_buffer.pfrb_size);
                  table_buffer.pfrb_size = table_buffer.pfrb_msize;
                  if (pfr_get_tables(NULL, table_buffer.pfrb_caddr,
                      &table_buffer.pfrb_size, PFR_FLAG_ALLRSETS))
                        err(1, "pfr_get_tables");
                  if (table_buffer.pfrb_size <= table_buffer.pfrb_msize)
                        break;
            }
            table_identifier = arc4random();
      }

      /* XXX would be *really* nice to avoid duplicating identical tables */

      /* Now we have to pick a table name that isn't used */
again:
      DEBUG("translating temporary table <%s> to <%s%x_%d>", tbl->pt_name,
          PF_OPT_TABLE_PREFIX, table_identifier, tablenum);
      snprintf(tbl->pt_name, sizeof(tbl->pt_name), "%s%x_%d",
          PF_OPT_TABLE_PREFIX, table_identifier, tablenum);
      PFRB_FOREACH(t, &table_buffer) {
            if (strcasecmp(t->pfrt_name, tbl->pt_name) == 0) {
                  /* Collision.  Try again */
                  DEBUG("wow, table <%s> in use.  trying again",
                      tbl->pt_name);
                  table_identifier = arc4random();
                  goto again;
            }
      }
      tablenum++;


      if (pfctl_define_table(tbl->pt_name, PFR_TFLAG_CONST, 1,
          pf->anchor->name, tbl->pt_buf, pf->anchor->ruleset.tticket)) {
            warn("failed to create table %s", tbl->pt_name);
            return (1);
      }
      return (0);
}

/*
 * Partition the flat ruleset into a list of distinct superblocks
 */
int
construct_superblocks(struct pfctl *pf, struct pf_opt_queue *opt_queue,
    struct superblocks *superblocks)
{
      struct superblock *block = NULL;
      struct pf_opt_rule *por;
      int i;

      while (!TAILQ_EMPTY(opt_queue)) {
            por = TAILQ_FIRST(opt_queue);
            TAILQ_REMOVE(opt_queue, por, por_entry);
            if (block == NULL || !superblock_inclusive(block, por)) {
                  if ((block = calloc(1, sizeof(*block))) == NULL) {
                        warn("calloc");
                        return (1);
                  }
                  TAILQ_INIT(&block->sb_rules);
                  for (i = 0; i < PF_SKIP_COUNT; i++)
                        TAILQ_INIT(&block->sb_skipsteps[i]);
                  TAILQ_INSERT_TAIL(superblocks, block, sb_entry);
            }
            TAILQ_INSERT_TAIL(&block->sb_rules, por, por_entry);
      }

      return (0);
}


/*
 * Compare two rule addresses
 */
int
addrs_equal(struct pf_rule_addr *a, struct pf_rule_addr *b)
{
      if (a->neg != b->neg)
            return (0);
      return (memcmp(&a->addr, &b->addr, sizeof(a->addr)) == 0);
}


/*
 * The addresses are not equal, but can we combine them into one table?
 */
int
addrs_combineable(struct pf_rule_addr *a, struct pf_rule_addr *b)
{
      if (a->addr.type != PF_ADDR_ADDRMASK ||
          b->addr.type != PF_ADDR_ADDRMASK)
            return (0);
      if (a->neg != b->neg || a->port_op != b->port_op ||
          a->port[0] != b->port[0] || a->port[1] != b->port[1])
            return (0);
      return (1);
}


/*
 * Are we allowed to combine these two rules
 */
int
rules_combineable(struct pf_rule *p1, struct pf_rule *p2)
{
      struct pf_rule a, b;

      comparable_rule(&a, p1, COMBINED);
      comparable_rule(&b, p2, COMBINED);
      return (memcmp(&a, &b, sizeof(a)) == 0);
}


/*
 * Can a rule be included inside a superblock
 */
int
superblock_inclusive(struct superblock *block, struct pf_opt_rule *por)
{
      struct pf_rule a, b;
      int i, j;

      /* First check for hard breaks */
      for (i = 0; i < sizeof(pf_rule_desc)/sizeof(*pf_rule_desc); i++) {
            if (pf_rule_desc[i].prf_type == BARRIER) {
                  for (j = 0; j < pf_rule_desc[i].prf_size; j++)
                        if (((char *)&por->por_rule)[j +
                            pf_rule_desc[i].prf_offset] != 0)
                              return (0);
            }
      }

      /* per-rule src-track is also a hard break */
      if (por->por_rule.rule_flag & PFRULE_RULESRCTRACK)
            return (0);

      /*
       * Have to handle interface groups seperately.  Consider the following
       * rules:
       *    block on EXTIFS to any port 22
       *    pass  on em0 to any port 22
       * (where EXTIFS is an arbitrary interface group)
       * The optimizer may decide to re-order the pass rule in front of the
       * block rule.  But what if EXTIFS includes em0???  Such a reordering
       * would change the meaning of the ruleset.
       * We can't just lookup the EXTIFS group and check if em0 is a member
       * because the user is allowed to add interfaces to a group during
       * runtime.
       * Ergo interface groups become a defacto superblock break :-(
       */
      if (interface_group(por->por_rule.ifname) ||
          interface_group(TAILQ_FIRST(&block->sb_rules)->por_rule.ifname)) {
            if (strcasecmp(por->por_rule.ifname,
                TAILQ_FIRST(&block->sb_rules)->por_rule.ifname) != 0)
                  return (0);
      }

      comparable_rule(&a, &TAILQ_FIRST(&block->sb_rules)->por_rule, NOMERGE);
      comparable_rule(&b, &por->por_rule, NOMERGE);
      if (memcmp(&a, &b, sizeof(a)) == 0)
            return (1);

#ifdef OPT_DEBUG
      for (i = 0; i < sizeof(por->por_rule); i++) {
            int closest = -1;
            if (((u_int8_t *)&a)[i] != ((u_int8_t *)&b)[i]) {
                  for (j = 0; j < sizeof(pf_rule_desc) /
                      sizeof(*pf_rule_desc); j++) {
                        if (i >= pf_rule_desc[j].prf_offset &&
                            i < pf_rule_desc[j].prf_offset +
                            pf_rule_desc[j].prf_size) {
                              DEBUG("superblock break @ %d due to %s",
                                  por->por_rule.nr,
                                  pf_rule_desc[j].prf_name);
                              return (0);
                        }
                        if (i > pf_rule_desc[j].prf_offset) {
                              if (closest == -1 ||
                                  i-pf_rule_desc[j].prf_offset <
                                  i-pf_rule_desc[closest].prf_offset)
                                    closest = j;
                        }
                  }

                  if (closest >= 0)
                        DEBUG("superblock break @ %d on %s+%xh",
                            por->por_rule.nr,
                            pf_rule_desc[closest].prf_name,
                            i - pf_rule_desc[closest].prf_offset -
                            pf_rule_desc[closest].prf_size);
                  else
                        DEBUG("superblock break @ %d on field @ %d",
                            por->por_rule.nr, i);
                  return (0);
            }
      }
#endif /* OPT_DEBUG */

      return (0);
}


/*
 * Figure out if an interface name is an actual interface or actually a
 * group of interfaces.
 */
int
interface_group(const char *ifname)
{
      if (ifname == NULL || !ifname[0])
            return (0);

      /* Real interfaces must end in a number, interface groups do not */
      if (isdigit(ifname[strlen(ifname) - 1]))
            return (0);
      else
            return (1);
}


/*
 * Make a rule that can directly compared by memcmp()
 */
void
comparable_rule(struct pf_rule *dst, const struct pf_rule *src, int type)
{
      int i;
      /*
       * To simplify the comparison, we just zero out the fields that are
       * allowed to be different and then do a simple memcmp()
       */
      memcpy(dst, src, sizeof(*dst));
      for (i = 0; i < sizeof(pf_rule_desc)/sizeof(*pf_rule_desc); i++)
            if (pf_rule_desc[i].prf_type >= type) {
#ifdef OPT_DEBUG
                  assert(pf_rule_desc[i].prf_type != NEVER ||
                      *(((char *)dst) + pf_rule_desc[i].prf_offset) == 0);
#endif /* OPT_DEBUG */
                  memset(((char *)dst) + pf_rule_desc[i].prf_offset, 0,
                      pf_rule_desc[i].prf_size);
            }
}


/*
 * Remove superset information from two rules so we can directly compare them
 * with memcmp()
 */
void
exclude_supersets(struct pf_rule *super, struct pf_rule *sub)
{
      if (super->ifname[0] == '\0')
            memset(sub->ifname, 0, sizeof(sub->ifname));
      if (super->direction == PF_INOUT)
            sub->direction = PF_INOUT;
      if ((super->proto == 0 || super->proto == sub->proto) &&
          super->flags == 0 && super->flagset == 0 && (sub->flags ||
          sub->flagset)) {
            sub->flags = super->flags;
            sub->flagset = super->flagset;
      }
      if (super->proto == 0)
            sub->proto = 0;

      if (super->src.port_op == 0) {
            sub->src.port_op = 0;
            sub->src.port[0] = 0;
            sub->src.port[1] = 0;
      }
      if (super->dst.port_op == 0) {
            sub->dst.port_op = 0;
            sub->dst.port[0] = 0;
            sub->dst.port[1] = 0;
      }

      if (super->src.addr.type == PF_ADDR_ADDRMASK && !super->src.neg &&
          !sub->src.neg && super->src.addr.v.a.mask.addr32[0] == 0 &&
          super->src.addr.v.a.mask.addr32[1] == 0 &&
          super->src.addr.v.a.mask.addr32[2] == 0 &&
          super->src.addr.v.a.mask.addr32[3] == 0)
            memset(&sub->src.addr, 0, sizeof(sub->src.addr));
      else if (super->src.addr.type == PF_ADDR_ADDRMASK &&
          sub->src.addr.type == PF_ADDR_ADDRMASK &&
          super->src.neg == sub->src.neg &&
          super->af == sub->af &&
          unmask(&super->src.addr.v.a.mask, super->af) <
          unmask(&sub->src.addr.v.a.mask, sub->af) &&
          super->src.addr.v.a.addr.addr32[0] ==
          (sub->src.addr.v.a.addr.addr32[0] &
          super->src.addr.v.a.mask.addr32[0]) &&
          super->src.addr.v.a.addr.addr32[1] ==
          (sub->src.addr.v.a.addr.addr32[1] &
          super->src.addr.v.a.mask.addr32[1]) &&
          super->src.addr.v.a.addr.addr32[2] ==
          (sub->src.addr.v.a.addr.addr32[2] &
          super->src.addr.v.a.mask.addr32[2]) &&
          super->src.addr.v.a.addr.addr32[3] ==
          (sub->src.addr.v.a.addr.addr32[3] &
          super->src.addr.v.a.mask.addr32[3])) {
            /* sub->src.addr is a subset of super->src.addr/mask */
            memcpy(&sub->src.addr, &super->src.addr, sizeof(sub->src.addr));
      }

      if (super->dst.addr.type == PF_ADDR_ADDRMASK && !super->dst.neg &&
          !sub->dst.neg && super->dst.addr.v.a.mask.addr32[0] == 0 &&
          super->dst.addr.v.a.mask.addr32[1] == 0 &&
          super->dst.addr.v.a.mask.addr32[2] == 0 &&
          super->dst.addr.v.a.mask.addr32[3] == 0)
            memset(&sub->dst.addr, 0, sizeof(sub->dst.addr));
      else if (super->dst.addr.type == PF_ADDR_ADDRMASK &&
          sub->dst.addr.type == PF_ADDR_ADDRMASK &&
          super->dst.neg == sub->dst.neg &&
          super->af == sub->af &&
          unmask(&super->dst.addr.v.a.mask, super->af) <
          unmask(&sub->dst.addr.v.a.mask, sub->af) &&
          super->dst.addr.v.a.addr.addr32[0] ==
          (sub->dst.addr.v.a.addr.addr32[0] &
          super->dst.addr.v.a.mask.addr32[0]) &&
          super->dst.addr.v.a.addr.addr32[1] ==
          (sub->dst.addr.v.a.addr.addr32[1] &
          super->dst.addr.v.a.mask.addr32[1]) &&
          super->dst.addr.v.a.addr.addr32[2] ==
          (sub->dst.addr.v.a.addr.addr32[2] &
          super->dst.addr.v.a.mask.addr32[2]) &&
          super->dst.addr.v.a.addr.addr32[3] ==
          (sub->dst.addr.v.a.addr.addr32[3] &
          super->dst.addr.v.a.mask.addr32[3])) {
            /* sub->dst.addr is a subset of super->dst.addr/mask */
            memcpy(&sub->dst.addr, &super->dst.addr, sizeof(sub->dst.addr));
      }

      if (super->af == 0)
            sub->af = 0;
}


void
superblock_free(struct pfctl *pf, struct superblock *block)
{
      struct pf_opt_rule *por;
      while ((por = TAILQ_FIRST(&block->sb_rules))) {
            TAILQ_REMOVE(&block->sb_rules, por, por_entry);
            if (por->por_src_tbl) {
                  if (por->por_src_tbl->pt_buf) {
                        pfr_buf_clear(por->por_src_tbl->pt_buf);
                        free(por->por_src_tbl->pt_buf);
                  }
                  free(por->por_src_tbl);
            }
            if (por->por_dst_tbl) {
                  if (por->por_dst_tbl->pt_buf) {
                        pfr_buf_clear(por->por_dst_tbl->pt_buf);
                        free(por->por_dst_tbl->pt_buf);
                  }
                  free(por->por_dst_tbl);
            }
            free(por);
      }
      if (block->sb_profiled_block)
            superblock_free(pf, block->sb_profiled_block);
      free(block);
}


Generated by  Doxygen 1.6.0   Back to index